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ABSTRACT

In high-precision teleoperation, high-resolution visual depth information may be critical,

thus requiring vision system capabilities quite different from lower precision teleoperation

vision systems. Several possible approaches to providing this depth information are available.

Multiple-camera television systems, 3-D television systems, and 3-D video graphics systems all

have advantages and disadvantages.

Multiple camera TV systems provide depth information by providing several views of the

workspace. In such systems, camera mobility is desirable. However, moving cameras can con-

fuse the operator. Therefore, the operator must know at all times the location of each camera.

Providing such information can be cumbersome and increase operator workload.

Converged stereo TV cameras configured for high-depth precision can yield significant

depth distortions, thus making many high-precision tasks extremely difficult, even for trained

operators.

Video graphic systems can provide depth information through a variety of techniques

including monocular depth labeling by color, brightness, perspective, occlusion, etc., as well as
traditional 3-D binocular image presentation. However, video graphics systems have a problem

which TV systems do not have; i.e., when viewing unpredictable situations, graphics systems

may not be able to provide critical information in a timely manner.

In space teleoperation additional problems arise, including signal transmission time delays.

These can greatly reduce operator performance.

Recent advances in graphics open new possibilities for addressing these and other prob-
lems.

At JPL, we are currently developing a multi-camera s)stem with normal and 3-D TV and

video graphics capabilities. Trained and untrained operators will be tested for high-precision

performance using two force-reflecting hand controllers and a voice recognition system to con-

trol two robot arms and up to 5 movable stereo or non-stereo TV cameras. Through extensive

c:,perimentation, we plan to evaluate a number of new techniques of integrating TV and video

graphics displays to improve operator training and performance in teleoperation and supervised
automation.
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IN TRODUCTION

Video graphics has recently advanced quite rapidly. Today, high-resolution, real-time

graphic systems can be purchased off the shelf, thus establishing graphics as a candidate for
real-time video image enhancement in high-precision teleoperation.

As the fields of robotics and teleoperation continue to develop, an increasing number of

tasks which currently must be performed manually will be performed either remotely or under

automation. Video graphics, a display technique for human observers, will most probably
extend the capabilities of teleoperation more than robotics.

Graphics will be very useful to remote operators by providing information which would

otherwise not be readily available, such as camera locations, repair manual diagrams, visual

depth information, velocities of relevant objects on a video monitor, force-torque diagrams,
etc.

In space, many of the tasks which are currently performed by EVA (extra-vehicular

activity) will be performed in the future by IVA (intra-vehicular activity). This makes teleo-
peration and robotics extremely interesting to NASA.

Also, current EVA tasks which have traditionally been labeled as future robotic tasks may
be accomplished sooner in the future under graphics-aided teleoperation. As time passes, the

"division of labor" between robotics and teleoperation will be more clearly defined.

In this paper, we describe the future vision system of the Man-Machine Systems Research
Lab at JPL. This lab is not to be confused with the Telerobot Demonstrator Testbed,
described elsewhere in this conference.

BACKGROUND

When viewing a work space remotely, through a TV camera, the one imprecisely-
displayed dimension is depth (i.e., distance from the TV camera.) This dimension is a critical

requirement for good teleoperation.

Much work has been done on presenting the video depth information in 3-D stereo (1 -

10). High-precision, close-up, 3-D TV has been shown to have a depth-resolution/depth-
distortion/im age-alignm ent trade-off (7).

An alternative to 3-D TV is the use of a multiple-camera viewing system, where the depth
information can be figured out by the operator by looking at the work space from several views
simultaneously.

A third alternative is to use graphics information to provide depth information (10).

Combinations of the above three depth display techniques are also feasible. Multiple 3-D
views with graphics overlays promise to be very useful in teleoperation.

DISCUSSION

Current Work at JPL

Over the past 3 1/2 years, we have studied 3-D TV, both mathematically and experimen-

tally. We have quantified the depth distortions, both for still and moving stereo camera rigs
(7). We have found an optimal method of moving the stereo camera rig to minimize 3-D

depth distortions caused by camera motions (8).

We have also demonstrated a stereo image presentation technique which yields aligned

images, high depth resolution and low depth distortion, thus solving the trade-off problem
(9,11). NASA has a patent on this technique.
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Future Work at JPL
Although our stereoimagepresentationtechniquepromisesto enhancehigh-precision3-D

TV, multiple-cameraviewing systemsmay still have an important role to play in the future of
teleoperation,particularly with the addition of graphics. Single-camerastereo systems (11)
provide the possibilityof multiple stereo3-D views.

We arebuilding anexperimentalteleroboticwork stationwith two robot armssurrounded
by 5 movable TV cameras. The cameraswill eachbe mounted on a computerizedgantry
frame, with one cameraon eachof the five sidesof the gantry frame. That is, the front, the
back, the left, the right and above. Each camera will have the ability to move in its plane (up-

down and front-back for the two sides, up-down and left-right for the front and back, and left-

right and foward-back for the top camera). In addition, each camera will be able to pan, tilt

and change the power of the lens (zoom). Thus each camera can view the work space from

any location and angle in its range of motion in its plane. Camera motions may be commanded

by the operator, for example, using voice control, or may be automated, following the robot

grippers as they move about the work space. We envision automating the system to tailor cam-
era motions to the current task at hand.

Up to five monitors will be available for the five camera views. Two additional monitors

may be available for system information, trouble shooting, etc. An image enhancement system
will also be present which will include graphics capabilities, and perhaps image processing capa-

bilities. The operator will be able to command (by voice control) which camera view will be

displayed on each monitor. Initial configuration may be fixed, for example left camera on the
left monitor, etc. This however is not required.

Our approach is both theoretical and experimental. The critical question, as always in this

work, is operator performance. Experimentation alone can answer if operators perform better
under one set of conditions than another. We intend to address a variety of topics in our

research, including the following.

1. Camera Locations and Apparent Motion

When viewing a workspace with movable cameras, an operator can be greatly confused by

not knowing at all times the locations, orientations, and motions of each camera. Apparent
motion, when one believes that the world is moving when actually the camera is moving, is

particularly confusing. When multiple cameras are available, the additional problem arises of
knowing which camera view is presented on the monitor (or each monitor if there are multiple

monitors). Graphics can help solve these problems by providing the necessary information.

We envision presenting a camera's video image with overlayed graphics information show-

ing the location and orientation of the TV camera on the monitor. See Figure 1.

In Figure 1, the TV camera image shows the right robot holding a ball and the left robot

holding nothing. In addition to the TV camera view is a top-view graphics image of the camera
frame, showing the positions and orientations of the camera. In this configuration (top view) it

is necessary to specify the height of the camera, perhaps with 3-D stereo depth, or some other

form of depth labeling. The pan of the camera is obvious, and the tilt can be displayed graphi-

cally by lines and circles. For example, lines can mean 15 degrees elevation (front of camera

above back) and pairs of circles can mean 15 degrees downward elevation. In Figure 1, the

camera is tilted 45 degrees upward.

This graphics presentation can also be displayed on a separate monitor.

The advantage of this presentation is that although both robot grippers seem to appear at

equal height, the fact that the camera is tilted upward tells us that, in fact, the left robot gripper

is actually higher than the right gripper. Because we know that the camera is tilted 45 degrees
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upward, we can judge better what motion will be necessary to hand the ball from the right

robot gripper to the left robot gripper. If the TV image is stereo, then one can also judge the
length of the motion.

Circles and lines need not be the best graphic illustration of tilt and, in fact, one of the
variables we plan to research is how to best present the camera locations. "Best" is measured

with respect to operator performance under a variety of tasks.

Another variable is the point of view of the graphics camera frame. In Figure 1, if the

frame were presented from the side view, instead of the top view, both of the camera's transla-

tional degrees of freedom would be specified without depth labeling. Although this seems to

be an obvious improvement, it may not be so. The top view unambiguously specifies which

camera we are viewing through. In addition, with multiple monitors, operators may prove to

perform better if all camera locations are specified from the same view.

Another alternative is to present all the cameras' locations on one graphics display of the

camera frame. This would allow operators to use the graphics information and the voice con-

troller to move a camera before viewing through it, thus saving valuable operator time. When

using a system with several cameras, but only one monitor, moving a camera before viewing
through it can be particularly valuable.

In a system where the lighting is variable, that is lights can be moved or turned on and

off, the graphics can be used to specify the current state of the lighting system. The lighting

can then be adjusted by voice control. In fact, any variable part of the system can be so
specified, and adjusted.

Eventually, we plan to automate the system to control the cameras and graphics to pro-
vide the optimal view for each task during operation.

2. Image Jitter During Camera and Robot Motion

One may find it desirable for the camera to track the end-effector of the robot during
robot motion. This raises the question of image jitter. Quite simply, if the camera does not

move smoothly enough, or if the camera is not synchronized with the robot motion, the image

of the robot will jitter on the monitor. Jittering images not only make precision operation

difficult (one may want to tighten a bolt as the robot moves a unit across the workspace), but
can increase operator discomfort.

We have designed our robot gantry so that the cameras can track the robot without jitter,
provided only panning and tilting camera motions are used in the tracking. The maximum

speed for jitter-free tracking is about 15 degrees/second. In our work configuration, that

translates to robot motions of 15 to 70 cm/sec, depending on which camera is being used for

tracking and the zoom setting of the lens. Thus, our system promises to provide excellent
robot tracking capabilities.

3. Camera Motions and Coordinate Transformations

In a teleoperator work station, where movable cameras are viewing the work space, any

panning, rolling or tilting of the cameras causes a mis-alignment between the coordinate system

of the camera and the coordinate system of the operator viewing the monitor. For example, if
the camera rotates 15 degrees to the left, the "straight ahead" direction on the monitor will

actually be 15 degrees to the left. If one pushes a robot hand controller "forward", the robot

will move foward, but will be seen on the monitor to move at an angle of 15 degrees to the

right. This requires the operator to mentally transform coordinates continually, during opera-

tion, thus causing an increase in workload as well as an increase in the probability of operator

error. If several movable cameras are presenting their images to several monitors, each may
require a different coordinate transformation. The resulting increase in workload and
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probabilityof operatorerror maywell becomeunmanageableanddangerous.
Whenviewing a workspacewith amovablecamera, at least 7 coordinate systems exist: the

Real World, the Work Space, the Robot Base, the Robot Joint, the Camera, the Control Sta-

tion, and the Operator coordinate systems.

The problem then is to minimize operator workload produced by the transformations

between these coordinate systems.

If the Robot-Camera Table is mounted on a moving vehicle, such as a planetary rover,

then the Real World and the Work Space coordinate systems are different. If, however, the

robot-camera table is not movable, then the Real World and the Work Space coordinate sys-

tems are equal. If the robot can move its base on the robot-camera table, then the Work Space
and the Robot Base coordinate systems are different. If, however, the robot cannot move with

respect to the robot-camera table, then the Work Space and the Robot Base coordinate systems

are equal.

We use the term "Robot Base" coordinate system to distinguish from the Robot Joint

coordinate system which customarily means the joint angles of the robot, and is different from

the spatial (X,Y,Z, Pan,Tilt,RoU) coordinate system as defined from a fixed point on the robot,
such as the robot base. The Robot Joint coordinate system is transformed to and from the

Robot Base coordinate system by the software that controls the Robot, and is used by the
robot's internal controller to move the robot joints correctly. Therefore we need not concern

ourselves with the Robot Joint coordinate system here.

The Camera coordinate system is defined by what the camera sees. Thus, a camera

panned to face southeast sees southeast as straight ahead. A camera roiled 180 degrees sees
the earth as "up" and the sky as "down."

The Control Station coordinate system is defined with respect to the operator control sta-

tion. Thus if the camera faces 15 degrees to the left in the Work Space coordinate system,

then the direction straight ahead in the Work Space would be presented at 15 degrees to the

right in the Control Station coordinate system.

The Operator coordinate system is defined with respect to the "subjective straight ahead"
direction of the operator. A great deal of study has been a3nducted on this phenomena (12).

For simplicity, let us assume that our operator defines this direction with respect to the opera-
tor control station, that is, the operator aligns himself or herself to face the control station

directly. For now, we shall ignore the possibility that an operator may sit at an angle to the
control station and not realize it.

At this point, let us consider a non-movable robot-canlera table with a robot whose base
is fixed to the table. Then the Real World, Work Space, and Robot Base coordinate systems

are equal.

Our concerns then become the transformations between the Robot Base, the Camera, the

Control Station, and the Operator coordinate systems. Let us see how they interact.

When a camera moves, say 15 degrees pan to the left, the Robot Base, the Control Sta-

tion, and the Operator coordinate systems do not change. Only the Camera coordinate system

changes; that is, straight ahead on the camera is now 15 degrees to the left for the Robot Base,

the Control Station, and the Operator. Thus, motions directly away from the camera (directly

into the monitor) are 15 degrees to the left w.r.t, all the other coordinate systems.

We believe that we have found a solution to the coordinate transformation problem, using

graphics. JPL and NASA are currently considering patent rights on this method, and thus we
cannot discuss it. If our idea is truly a solution, then its application will give the Robot Base,

the Camera, the Control Station, and the Operator coordinate systems the same orientations.

No transformations will need to be made by the operator, and no camera angles will need to be
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remembered.

4. Orthogonal and Perspective Camera Views

We shall test operator performance with both orthogonal multi-camera views and perspec-
tive camera views. Let us discuss first the orthogonal-camera configuration.

Consider 3 cameras, one looking from above, one from one side, and one from the front.

Consider 3 monitors placed with the top view above the front view, and the side view along-

side the front view. This is the TV approximation to the classic orthogonal projection of
m ech an ical drawings.

We say "the TV approximation" because it will not give a true orthogonal projection. In a

TV image, two lines overlap if they point directly toward the camera, but in orthogonal projec-
tions, two lines overlap if they are perpendicular to the projection. See Figure 2. Thus, in fact,

only the central line of view in the side camera is truly orthogonal to the front camera view.

For the rest of the image, equal depth must be inferred. Two objects at equal depth from the

front camera will have their front edges overlap exactly in the side camera's view only if the

front edges of the two objects are viewed exactly at the middle of the side camera. The images

of all other pairs of objects at equal depth will not overlap exactly. This is an important

difference, and may prove to be the source of many operator errors when using orthogonal TV

cameras. This point must not be overlooked, because it illustrates that orthogonal TV viewing

may be misleading, particularly to people accustomed to orthogonal mechanical drawings,
because they expect overlap to mean equal depth.

Let us now consider perspective viewing. This is the depth-display technique of the great
Renaissance artists.

The left-brain/right-brain dichotomy between people suggests that people fall into analytic

and artistic categories, particularly in terms of perception and motor performance. It also sug-

gests that all of us have both artistic and analytic information processors in our heads. In any

case, it is safe to say that we all have varying degrees of skill in judging depth both from
orthogonal and perspective displays.

Unfortunately, orthogonal TV viewing has the problem discussed above. Thus, in multi-

camera viewing, we may better perform using our perspective processor to judge depth.

Surely, this needs to be tested experimentally, and carefully. We must first search for perspec-
tive views, and then test them against optimal orthogonal views.

5. Other Planned Graphics Overlay Experiments

We plan to test operator performance when aided by a variety of graphics overlays, includ-

ing predictive displays and force-torque diagrams.

Predictive displays of robot positions are particularly useful when dealing with significant
signal transmission time delays. When signals must travel long distances, for example through

space, time delays between the time of an event and the time one views the event become

significant. In a feedback loop, such as long-distance teleoperation, the time delay can greatly

reduce perform ance.

Consider a teleoperated servicer (with a robot arm) on the moon, which is being con-
trolled from earth. A time delay of about 4 seconds round-trip from the earth to the moon

and back can be expected. Suppose at time t = 0, an operator moves the hand controller. At

time t = 2 seconds, the servicer receives the signal and initiates the motion. At t = 4
seconds, the servicer is first seen to move on the operator's monitor.

With a predictive display, the expected final position of the robot arm is displayed as a
graphics overlay on the monitor immediately after the hand controller is moved. This has been
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describedin detail elsewhere(13 - 16). For largetime delays,the predictivedisplayhasbeen
shownto improve operatorperformance(13). For smalltime delays,the extra information on
the monitor from the predictive displaymay clutter the in,age and reduce operator perfor-
mance. We shall test this questionfor a varietyof tasks.

Force-torquedisplaysgraphicallyshow the forces and torques sensedby the robot (17),
at, say, the wrist. We shall test operatorperformancewhile varying the locations, size, and
other presentationcharacteristicsof the display. For example,we plan to overlayeachrobot's
force-torquedisplayon its forearmsurfaceseenin the TV monitor. We shall alsopresentthe
displayon anothermonitor. Our goal,asin all our work, is to presentthe relevant information
to the operatorin amannerwhich increasesoperatorperformance.

CONCLUSION
Recent advancesin graphicsnow make graphicsa useful tool for enhancingvideo

displaysin teleoperation. At JPL, we are currently building a multi-cameraviewing system
with graphicscapabilities. We plan to addresscertain problems in teleoperation that, once
resolved, promise to enhancethe capabilitiesof teleoperation. Our goal is to maximize the
utility of teleoperationin spaceapplications.

ACKNOWLEDGEMENTS

We thank Antai K. Bejczy, Derek H. Fender and Edward R. Snow for participating in

many discussions during the process of this work. This work was carried out at the Jet Propul-
sion Laboratory, California Institute of Technology, under contract to the National Aeronautics

and Space Administration.

REFEREN CES

o Shields NL, Kirkpatrick M, Malone TB and Huggins CT: Design Parameters for a Stereoptic

Television System based on Direct Depth Perception Cues. Proceedings of the Human Factors

Society 19th Annual Meeting (1975), Washington, D.C.

. Grant C, Meirick R, Polhemus C, Spencer R, Swain D and Tewell R: Conceptual Design

Study for a Teleoperator Visual System Report. Martin Marietta Corporation Report, NASA

CR-124273 (1973), Denver, Colorado.

. Upton HW and Strother DD: Design and Flight Evaluation of a Helmet-mounted Display and

Control System. In Birt JA & Task HL (Eds.)" "A symposium on visually coupled systems:

Development and application", Brooks Air Force Base Report AMD-TR-73-1 (1973).

. Zamarian DM" Use of Stereopsis in Electronic Displays: Part II - Stereoscopic Threshold Per-

formance as a Function of System Characteristics. Douglas Aircraft Company Report MDC

J7410 (1976).

. Pepper, RL, Cole RE, and Spain, EH: The Influence of Camera Separation and Head Move-
ment on Perceptual Performance under Direct and TV-displayed Conditions. Proceedings of

the Society for Information Display (1983).

. Bejczy, AK: Performance Evaluation of Computer-aided Manipulator Control. IEEE Interna-

tional Conference on Systems, Man and Cybernetics (1976).

517



. Diner DB and yon Sydow M: Stereo Depth Distortions in Teleoperation. JPL Publication
87-1 (1987), Jet Propulsion Laboratory - NASA, USA. National Technical Information

Service # 87N18985; Proceedings of the Twenty-Second Annual Conference on Manual

Control (1986); AFWAL-TR-86-3093, Wright-Patterson AFB Aeronautical Labs, Ohio,
USA.

o

.

10.

11.

12.

13.

14.

15.

16.

Diner DB and yon Sydow M: Dynamic Stereo Vision Depth Distortions in Teleoperation.

Proceedings of the International Symposium on Teleoperation and Control (1988),
Springer - Verlag, New York. ISBN 0-387-50054-5.

Diner DB and yon Sydow M: Static Stereo Vision Depth Distortions in Teleoperation,

"Ergonomics of Hybrid Automated Systems I" (1988), Elsevier Science Publishers B. V.,
Amsterdam.

Fisher SS, McGreevy, Humphries H, Robinett W: Virtual Environment Display System
NASA Ames Research Center, IEEE Computer Graphics 21:1 (1987).

Diner DB and Fender DH" Handbook of Human Engineering in Stereoscopic Viewing Devices
(In preparation). JPL External Publication, Jet Propulsion Laboratory, Caltech, Pasadena,
California, USA. Expected Publication 1989.

Howard IP: Perception of Posture, Self Motion and Visual Vertical Handbook of Perception and
Human Performance !. John Wiley and Sons, Inc., New York (1986).

Hashimoto T, Sheridan TB and Noyes MV: Effects of Predictive Information in Teleoperation
with Time Delay. Japan Journal of Ergonomics 22,2 (1986).

Noyes MV and Sheridan TB: A Novel Predictor for Telemanipulation Through a Time Delay.
Proceedings of Twentieth Annual Conference on Manual Control (1984), NASA Ames
Research Center, Moffett Field, California.

Buzan FT: Control of a Teleoperator in the Presence of Large Time Delays. MIT Man-

Machine Systems Laboratory, JPL Contract no. 956892, Mid-Term Reports, June (1986)
and May (1987).

Venema SC and Bejczy AK: The Phantom Robot." Predictive Displays for Teleoperation with
Time Delay. IEEE International Conference on Robotics and Automation (1989). Sub-
mitted.

17. Bejczy AK and Dotson RS: A Force-torque Sensing and Display System for Large Robot
Arms. Proceedings of IEEE Southeastcon82, Destin, Florida (1982).

518



Figure 1" TV camera image of two robot arms with graphic overlay
of top-down view of camera frame and camera location.
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Figure 2: Top view of the locations of 3 pairs of objects which:
(a) overlap in a side TV-camera view, and
(b) overlap in a side view in standard orthogonal

mechanical drawings.
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